CC-BY 4.0

Wheat seedlings traits as affected by soaking at titanium dioxide nanoparticles

Mona Fathi Dawood 1  ,  
Assiut University, Botany and Microbiology department, Assiut University, 71516 Assiut, Egypt
Environ. Earth Ecol. 2017;1(1):102-111
The recent advances in nanotechnology and its use in the field of agriculture are astonishingly increasing; therefore, it is important to understand their role in plant life. Four wheat cultivars soaked in different concentrations of TiO2-NPs (0.0%, 0.025 %, 0.05 %, 0.1 %, 0.2 % and 0.5 %) to select a concentration that stimulate cultivars growth under normal conditions during germination stage. Cultivar dependency appeared markedly in their response to TiO2-NPs. Generally, TiO2-NPs did not modify germination percentage, despite 0.1 % TiO2-NPs vastly enhanced seed potential by increasing vigor index, root dry matter stress tolerance index, shoot dry matter stress tolerance index, dry matter stress tolerance index, plant height stress tolerance index, root length stress tolerance index, fresh matter stress tolerance index and pigment composition. The surrounding concentrations exert little effect on the studied parameters and 0.5 % TiO2-NPs suppressed all indices.
Corresponding author
Mona Fathi Dawood   
Assiut University, Botany and Microbiology department, Assiut University, 71516 Assiut, Egypt
1. Behra R, Krug H (2008) Nanoecotoxicology-Nanoparticles at large. Nature Nanotechnology, 3: 253-254. doi: 10.1038/nnano.2008.113.
2. Brunner TI, Wick P, Manser P, Spohn P, Grass R N, Limbach L K, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and effect of particle solubility. Environmental Science & Technology. 40, 4374-4381.
3. Crabtree RH (1998): A new type of hydrogen bond. Science 282:2000–2001.
4. Dahindwal AS, Lather BPS, Singh J (1991) Efficacy of seed treatment on germination, seedling emergence and vigor of cotton (Gossypium hirsutum) genotypes. Seed Research, 19: 59-61.
5. Feizi H, Rezvani Moghaddam P, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146: 101-106.
6. Gaballah M S, Mandour MS (2000) Increasing drought resistance of wheat plants during grain filling by using chemical desiccants. Journal of Science, Mansoura Univ., 25(2): 833-841.
7. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agriculture and Food Chemistry, 60(39): 9781-9792.
8. Hghighi M, Heidarian S, Teixeira Silva JA (2012) The effect of titanium amendment in N- withholding nutrient solution on physiological and photosynthesis attributes and micronutrient uptake of tomato. Biological Trace Element Research, 150: 381-90. doi: 10.1007/s12011-012-9481-y.
9. Hong FH, Yang F, Liu C, Gao Q, Wan ZG, Gu FG, Wu C, Ma ZN, Zhou J, Yang P (2005) Influences of nano-TiO2 on the chloroplast aging of spinach under light. Biological Trace Element Research, 104: 249-260. PMID: 15930594.
10. Lei Z, Mingyu S, Chao L, Liang C, Hao H, Xiao W, Xiaoqing L, Fan Y, Fengqing G, Fashui H (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biological Trace Element Research, 119: 68–76. doi: 10.1007/s12011-007-8028-0. Epub 2007 Sep 5. PMID: 18186002.
11. Lichtenthaler HK (1987) Chlorophyll and carotenoids pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382.
12. Mahmoodzadeh H, Aghili R, Nabavi M (2013) Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum). Technical Journal of Engineering and Applied Sciences, 3 (14): 1365-1370, 2013.
13. Mingyu S, Fashui H, Chao L, Xiao W, Xiaoqing L, Liang C, Fengqing G, Fan Y, Zhongrui L (2007) Effects of Nano-anatase TiO2 on absorption, distribution of light, and photoreduction activities of chloroplast membrane of spinach. Biological Trace Element Research, 118: 120-130.
14. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia, 62(2), 161–165.
15. Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus, 2(1): 247. doi: 10.1186/2193-1801-2-247.
16. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17: 372-386.
17. See comment in PubMed Commons belowNawaz F (2014) Wheat response to exogenous selenium supply under drought stress (Ph.D. dissertation), University of Agriculture, Faisalabad, Pakistan, 2014.
18. Owolade OF, Ogunleti DO, Adenekan MO (2008) Titanum dioxide affects diseases, development and yield of edible cowpea. Electronic Journal of Environmental Agricultural and Food Chemistry, 7(5): 2942–2947.
19. Rezaei F, Moaveni P, Mozafari H (2015) Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean (Glycine max L.) at shahr-e-qods, Iran. Biological Forum – An International Journal 7(1): 957-964.
20. USEPA (2007) Nanotechnology White Paper - External Review Draft.U.S. Environmental Protection Agency. Document no. EPA 100/B- 07/001.
21. Yang F, Hong F, You W, Liu C, Gao F, Wu C,Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110(2): 179–190.
22. Zaki RN, Radwan TEE (2011) Improving wheat grain yield and its quality under salinity conditions at a newly reclaimed soil by using different organic sources as soil or foliar applications. Journal of Applied Sciences Research, 7(1): 42-55.
23. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nanoTiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104: 83-91. pmid:15851835 doi: 10.1385/bter:104:1:083.
Copy url